Module Title	Maths - S2
Module Syllabus no. (if any) |
Year offered | 2011
Start date |
End date |
Syllabus / Content / Learning Outcomes | Follow MOE Secondary 2 Maths syllabus as attached in the Annex 1
No of teaching hours | 4hrs x 5days x 8 weeks = 160 hrs
Teaching Methods | Classroom teaching, exercises and assessments.
Assessment Methods and Weightages | Monthly assessments and end of course examination
Skills for maximising learning outcomes | The student must have learnt the equivalent of Secondary 1 Maths syllabus before embarking on this course.
Dates of examinations, major assessments and assignments |
Recommended text | Mathematics 2 6th Edition Shinglee
Additional reference texts (if any) |
Additional Remarks (if any) |

<table>
<thead>
<tr>
<th>Lesson No.</th>
<th>Learning Outcome</th>
</tr>
</thead>
</table>
| 1 | **Ratio, rate and proportion**
Include:
- map scales (distance and area)
- direct and inverse proportion |
| 2 | **Algebraic manipulation**
Include:
- expansion of the product of algebraic expressions
- changing the subject of a formula
- finding the value of an unknown quantity in a given formula |
| 3 |
- recognising and applying the special products
 - \((a \pm b)^2 = a^2 \pm 2ab + b^2\)
 - \(a^2 - b^2 = (a + b)(a - b)\)
- factorisation of algebraic expressions of the form
 - \(a^2 x^2 - b^2 y^2\)
 - \(a^2 \pm 2ab + b^2\)
 - \(ax^2 + bx + c\) |
| 4 |
- multiplication and division of simple algebraic fractions,
- addition and subtraction of algebraic fractions with linear or quadratic denominator |
| 5 | **Functions and graphs**
Include:
- graphs of linear equations in two unknowns |
| 6 |
- graphs of quadratic functions and their properties
 - positive or negative coefficient of \(x^2\)
 - maximum and minimum points
 - symmetry |
| 7 | **Solutions of equations**
Include:
- solving simultaneous linear equations in two unknowns by
 - substitution and elimination methods
 - graphical method
- solving quadratic equations in one unknown by factorisation
- formulating a pair of linear equations in two unknowns or a quadratic equation in one unknown to solve problems

Set language and notation
- use of set language and the following notation:
 - Union of A and B $A \cup B$
 - Intersection of A and B $A \cap B$
 - Number of elements in set A $n(A)$
 - “… is an element of …”
- “… is not an element of …”
- Complement of set A A'
- The empty set \emptyset
- Universal set
- A is a subset of B
- A is a proper subset of B
- A is not a subset of B
- A is not a proper subset of B

Congruence and similarity
Include:
- congruent figures as figures that are identical in shape and size
- matching sides and angles of two congruent polygons

Similar figures
- similar figures as figures that have the same shape but different sizes
- properties of similar polygons:
 - corresponding angles are equal
 - corresponding sides are proportional

Enlargement and reduction
- enlargement and reduction of a plane figure by a scale factor
- scale drawings
- solving simple problems involving similarity and congruence

Pythagoras’ theorem
Include:
- use of Pythagoras’ theorem
- determining whether a triangle is right-angled given the lengths of three sides

Mensuration
Include:
- volume and surface area of pyramid, cone and sphere

Data analysis
Include:
- interpretation and analysis of:
 - dot diagrams
 - stem-and-leaf diagrams

Probability
Include:
- probability as a measure of chance
- probability of single events (including listing all the possible outcomes in a
simple chance situation to calculate the probability)